In-Flight Firmware Update of an On-Board
Computer for Small Satellites

M. A. Mecha
ICIFI, UNSAM
Buenos Aires, Argentina
mmecha@estudiantes.unsam.edu.ar

L. L. Gagliardi

N. Alvarez
ITECA, UNSAM
Buenos Aires, Argentina
nalvarez@unsam.edu.ar

G. A. Sanca

Abstract—In this work, we introduce an In-Flight Firmware
Update technique, describing the firmware image preparation,
transmission, uploading and error mitigation strategies. This
technique was tested on the LabOSat-02 On-Board Computer
with satisfactory results. The system was tested with a Bit Error
Rate of up to 10~ with transmission times of less than 3 times
the base time (BER = 0) and without errors.

Index Terms—On-Board Computer, Space Mission, Hardware,
Firmware, Operation Modes, Small Satellites, Bootloader

I. INTRODUCTION

In the modern era of satellite technology, nanosatellites
have become a cost-effective platform for diverse scientific
and technological missions. A key challenge is securely and
efficiently updating flight firmware in orbit [1], [2], especially
given limited communication and physical access. This work
proposes an In-Flight Firmware Update mechanisms over
LabOSat-02 [3] prioritizing the data reliability.

LabOSat (Laboratory-On-a-Satellite) is a research group fo-
cused on raising the Technology Readiness Level of electronic
systems for space. Since 2014, it has participated in nine LEO
missions, starting with LabOSat-01 [4], [5]. In recent years, the
group developed LabOSat-02, an On-Board Computer (OBC)
designed to control payloads, run experiments, and manage
data via multiple communication protocols.

This work aims to design a Bootloader and in-flight safety
mechanism to update or restore the OBC via Controller Area
Network (CAN), chosen for its robustness and reliability.
Unlike I2C, commonly used in CubeSats but prone to lockups
and errors [6], CAN provides differential signaling, error
handling, and automatic retransmission. RS-485 is another
option offering noise immunity and throughput but lacks
standardized protocols and error-checking [7]. According to
ESA standards, the bit error rate threshold is 10~° for the
Ground Station (GS) Satellite uplink communication [8], [9].
For onboard CAN communication between the transceiver and
the OBC, the Bit Error Rate (BER) is significantly lower due
to the short distance and controlled electrical environment.
Pessimistic BER values for CAN range between 10~!! and

ICIFI, UNSAM-CONICET
Buenos Aires, Argentina
Igagliardi @unsam.edu.ar

ICIFI, UNSAM-CONICET
Buenos Aires, Argentina
gsanca@unsam.edu.ar

F. Di Nardo
ARSAT, UNSAM
Buenos Aires, Argentina
fdinardo @arsat.com.ar

L. Finazzi
ICIFI, UNSAM-CONICET
Buenos Aires, Argentina
Ifinazzi @unsam.edu.ar

F. Golmar
ICIFI, UNSAM-CONICET
Buenos Aires, Argentina
fgolmar @unsam.edu.ar

10~7 [10], depending on noise levels and shielding quality,
with a commonly assumed average around 10~? in moderate
conditions. These values will be taken in account to support
the plotted results.

II. PROCEDURE FOR REMOTE FIRMWARE UPDATING

The main objective of this work is to transfer a binary image
from the GS to the satellite transceiver and then, transfer it
through CAN to the main OBC — both systems emulated with
two OBCs in the laboratory — , which will update its own
main program executing a secure sequence to avoid flashing
errors. According to this, a general diagram of the complete
communication system to be evaluated is shown in the Fig. 1.

Firstly, the firmware binary image is generated with a
compiler tool chain and divided in pages, this enables the
possibility of re-sending faulty pages which makes the data
transmission process modular. To check the page validity, a
Checksum (CS) is sent at the end of each page. Each page
is divided into packets for transmission, and sent with its
corresponding CS, if it does not match the one calculated by
the OBC, the page is re-sent. In order to achieve a successful
procedure, each page of the binary image and the Number
of Pages (NP) received by the OBC is stored in an external
Ferroelectric Random Access Memory (FRAM), selected for
their high tolerance to ionizing radiation [11]. Finally, In case
of GS sends a command to start it, the OBC will start the
flashing process loading the binary image stored in the FRAM
and into the program Flash. Fig. 2 illustrates the step-by-step
mechanism that executes the OBC to update the Flash memory
with a new firmware. It describes the structure of the internal
and external memories and interactions between them. The
numbers represent the order in which the steps are executed.
In particular:

1) The Bootloader causes the program counter (PC) to
jump to the main program.

2) Main Program stores the image and flag in the FRAM.
After making a power reset:

3) The current flag value is evaluated in the Bootloader.



Ground Station Satellite

BER < 10°®

LS02-OBC

Transceiver

10" <BER < 107

Fig. 1. Diagram that describes the main noise sources that can induce bit errors during the transmission. In this case, according to ESA standards [8] the uplink
communication introduces a BER of 10~° and the CAN bus communication adds, as a pessimistic value, a maximum BER of 10~7 [10]. The experiment
was carried out on ground, where the transceiver was emulated by a secondary OBC, both units communicating via CAN.

4) Bootloader causes the PC to jump to Update Program.
5) The firmware image is read in the Update program and
loaded in Flash.

FRAM Flash Memory
Bank A Bank A Bank B
Flag I- @— ’I Bootloader |

Application binary )

. Main Program
image

Fig. 2. Overview of the memory banks partitions. The Flash memory contains
the Main, the Firmware Update and Bootloader programs. The FRAM stores
the Binary Image and the flag that indicates if an update is in order.

A. Firmware Image Preparation

Once the firmware image is generated (using an Integrated
Development Environment), the data is separated in 128 Byte
pages, consisting of 16 packets of 8 Bytes each. This data
partition guarantees that pages can be re-sent if a transmission
error occurs (the optimum page size is dependent on the
BER) [1]. To verify data, the process uses a CS for each page
of the binary image. For the purposes of data communication,
the goal of a CS algorithm is to balance the effectiveness
at detecting errors against the cost of computing the check
values. Furthermore, it is expected that a checksum will work
in conjunction with other, stronger algorithms, such as a Cyclic
Redundancy Check (CRC). In this case, the CAN data link
layer uses a inherent CRC to check the data was not corrupted
during transmission, and a CS is used by higher layers to
ensure that data was not corrupted in the communication
between GS and the satellite. A Fletcher CS is performed to
each page, due to its lower computational effort (compared to a
CRC) and its position dependency (unlike a standard CS) [12].
This ensures data safety while adding little computational
overhead.

B. Data Transmission and Storage

To upload the data to the nanosatellite the Main program
performs a communication sequence shown in Table 1.

TABLE I
MESSAGING SEQUENCE DETAILING THE INTERACTION BETWEEN THE GS
AND THE OBC DURING DATA TRANSMISSION.

N GS OBC
1 Start Transmission —
Check for vital tasks
2 — Ready
3 Data message 1 (Page 1) —
Store in FRAM
4 Data message 2 (Page 1) —
Store in FRAM
18 Data message 16 (Page 1) | —
Store in FRAM
19 End of page (CS) —
Verify Checksum
20 — Status
Same sequence from step 3 to step 20 repeated for subsequent pages
n End Transmission (NP) —
Verify NP
n+l — Status
n+2 Load to Flash command —
Raise flag
n+3 — Entering Bootloader
Reset

To begin the process, a Start transmission is sent by
the GS. Then, after waiting for vital tasks to end, the OBC
responds with a Ready frame. The upload begins and each of
the 16 Data message packets is sent and stored in FRAM.
Subsequently, an End of Page message is transmitted, ac-
companied by the Fletcher CS of the entire page, which is
calculated by the GS. Then, the OBC counts the number of
packets received, computes the Fletcher CS and compares it to
the one received. If both validations pass, the OBC transmits
a correct Status frame; otherwise, it sends an status error
message, prompting the page to be resent. After all the pages
are transmitted, an End Transmission is sent, accompanied
by the total NP. This is also verified by the OBC, which
responds with a Status. If this validation is not correct, only
this message is sent again three times. However, if the NP are



different at least two times, the full sequence is performed
again. Finally, once the GS decides to start the Firmware
Update, the Load to Flash command is sent. The OBC then
raises the Flash Ready flag in the external memory, informs
that is Entering Bootloader, by sending the corresponding
message, and then performs a soft reset before the Bootloader
program runs.

C. New Image Flashing

Once the messaging sequence is completed and the Load
to Flash frame is received, the OBC Bootloader program
executes. It begins by checking the flag, and then takes one
of two routes, as described in Fig. 3. If this flag raised, the
flashing process will begin. Otherwise, a memory jump to
Main program will be performed. The Update Program begins
by reading the external memory and loading each page in
Flash. After all pages are loaded, the flag is turned down and
a soft reset is performed. Finally, the Bootloader will make
the jump to the Main program, due to the flag being down.

Bootloader Main Program

True

Update

Set Flag to 0 Eham——

Fig. 3. Bootloader flowchart. The Bootloader checks the flag in FRAM and,
according to the value, it will either perform a memory jump to the Main
program or begin the flashing process.

D. Error Mitigation

Transmission errors can arise from environmental factors
such as Free Space Path Loss (FSPL), Doppler shift, and at-
mospheric attenuation [9]. To address this, the system includes
mitigation strategies:

o Connection loss: If packets or an entire page are lost,
the NP check will fail, and the GS will not receive the
“Correct Status” message. The affected page will be re-
sent until acknowledged. Previously sent pages are stored
in FRAM, avoiding their retransmission.

« Bit errors: Noise during transmission may cause incorrect
bits. If the page CS at the OBC does not match the value
coming from the GS, the page is re-sent.

o System Reset: The OBC implements an external watch-
dog timer and other protection circuits to handle the
Single Event Effects (SEE) [7]. They can trigger a reset
during a page transmission and therefore interrupt the
complete firmware image transmission. After the reset,
the Bootloader checks if the flag is not rised — meaning
that the flashing process did not finish completely —, in
which case the process is re-started to ensure completion.

III. RECOVERY MODE

Due to the possibility of SEU-induced failures, the in-
tegration of fault-tolerance techniques that enable In-Flight
firmware maintenance has significant utility [7]. According to
this premise, a firmware replication in FRAM can be a robust
solution against a malfunction over the operating program in
Flash [2]. This method involves storing a backup copy of the
firmware in the FRAM, whose tolerance to radiation makes it
suitable for storing a secure copy of a safe mode program [11].
In case of a main program failure, the Bootloader uploads the
safe mode binary image into the program memory.

Since each update writes the running image based on
the information contained in the external FRAM memory, a
backup image is always maintained and kept up to date.

IV. EXPERIMENTAL RESULTS

As it was previously discussed, the total BER of CAN is
=~ 1075 but for the next experiments, we considered a worse
scenario of 1073, The Fletcher CS algorithm detects bit errors
and triggers a full page retransmission when one occurs. This
ensures data integrity but introduces a trade-off in terms of
overall transmission time, especially with a high BER. The
total time required for a full firmware image transmission is
inversely proportional to the probability of getting a full page
without errors. The absolute time, as a function of BER, is
modeled by Eq. 1 as:

Tbase

Ttota.l = W (1 )

Where:

o P: Number of packets per page.

o B: Number of bits per packet (8 bytes = 64 bits).
o Tiotal: Total transmission time.

o Thase: Transmission time when the BER = 0.

and:
Tbase = (TCS + (P + 1) . Tpacket) -NP (2)

Where:

o NP: Number of pages in the full firmware image.

o P+1: Packets transmitted per page (41 for the CS)
e Tgs: Checksum calculation time.

o Thacket: Transmission time for each packet.

Fig. 4 illustrates the relationship between transmission time
and BER. Both the experimental results and the theoretical
predictions based on Eq. 1 are plotted to validate the model.

To establish a baseline, a full transmission without errors
(BER = 0) was performed, measuring the time required under
ideal conditions. All experiments described in this work were
conducted on ground, using two OBC units to emulate the
Ground Station and the satellite transceiver. Bit errors were
injected in a controlled environment to simulate communica-
tion noise, allowing us to evaluate the firmware update system
under harsh conditions without requiring in-orbit deployment.

As shown by Eq. 1, total transmission time grows with
the page length. This arises from the need to retransmit an



2751 * Experlm.ental Results A
—— Theoretical Results

= 2.50+

2.251

Normalized time [Adim
== PN
N w ~ o
w o w o

1.001

0.0 0.2 0.4 0.6 0.8 1.0
BER / 1000 [Adim.]

Fig. 4. Transmission Time for Different BER. Time is measured relative to
the time of a full transmission with a BER = 0. The intention of this graph
is to evaluate the time it takes to transfer the complete binary image under
aggressive noise conditions (BER = 10~3) beyond the BER = 107° set as a
recommended limit by ESA [8].

entire page if any bit within the page is corrupted. Therefore,
increasing the page length results in longer transmission times
in noisy environments, as more data is at risk of corruption.
This suggests that using shorter pages would reduce the im-
pact of retransmissions in high-noise environments. However,
shorter pages also mean that the CS must be calculated and
transmitted more frequently, increasing overhead and time.
Thus, the trade-off lies between having less retransmissions
or having less overhead.

Fig. 5 demonstrates how the page length affects the rela-
tionship between transmission time and bit error probability.
To establish a baseline, a full transmission with pages of size
16 and without errors (BER = 0) was performed, measuring
the time required under ideal conditions. In low noise environ-
ments, using larger pages can reduce transmission time, as the
CS is computed and transmitted less frequently. However, in
high-noise environments, larger pages increase the likelihood
of full-page retransmissions, leading to longer transmission
times. Conversely, shorter pages are more suitable for high-
noise environments but come with higher overhead due to
frequent CS calculations and transmissions.

V. CONCLUSIONS

The Firmware Update procedure, including a recovery
mode, was successfully developed and tested with satisfac-
tory results. The steps for flashing were outlined, identifying
potential error sources and proposing preemptive measures.
The transmission protocol was evaluated with BERs of up to
10~2 for 16-packet pages, with transmission times of less than
3 times the base time (BER = 0) case, without errors in the
final firmware image. Different page sizes were simulated and
optimal page sizes were determined as a function of the BER.

Normalized time [Adim.]
NN W W A A
o [6,] o [0, o w

=
w
L

=
o
’

Packets per page

Fig. 5. Transmission Time for Different Page Lengths and BERs (expresed
in 10~3). Each page consists of packets of 8 bytes each. Each curve has
an optimal page size shown with black stars in the plot. The vertical line
representg the selected page size (16 packets), which is optimal for a BER of
31-107".

ACKNOWLEDGMENTS

The authors acknowledge financial support from
ANPCyT PICT 2017-0984 “Componentes Electrénicos para
Aplicaciones Satelitales (CEpAS)”, PICT-2019-2019-02993
“LabOSat: desarrollo de un Instrumento detector de fotones
individuales para aplicaciones espaciales” and UNSAM-ECyT
FP-001.

REFERENCES

[1] 1. Stinter et al., “Firmware Updating Systems for Nanosatellites,” IEEE
Aerospace and Electronic Systems Magazine, vol. 31, no. 5, pp. 3644,
2016.

P. Botma, A. Barnard, and W. Steyn, “Low cost fault tolerant techniques

for nano/pico-satellite applications,” in Proc. Africon, 2013, pp. 1-5.

L. Gagliardi et al., “LabOSat-02: Hardware and Firmware Development

of an On-Board Computer for Small Satellites,” IEEE Embedded Systems

Letters, vol. 16, no. 1, pp. 37-40, 2024.

[4] G. A. Sanca et al., “LabOSat-01: A Payload for In-Orbit Device
Characterization,” IEEE Embedded Systems Letters, vol. 16, no. 1, pp.
4548, 2024.

[5] L. Finazzi et al., “Total ionizing dose measurements in small satellites
in LEO using LabOSat-01,” Nucl. Instrum. Methods Phys. Res. A, vol.
1064, Art. no. 169344, 2024.

[6] J. Bouwmeester, M. Langer, and E. Gill, “Survey on the implementa-

tion and reliability of CubeSat electrical bus interfaces,” CEAS Space

Journal, vol. 9, pp. 163-173, 2017.

A. Cratere et al., “On-Board Computer for CubeSats: State-of-the-Art

and Future Trends,” IEEE Access, vol. 12, pp. 99537-99569, 2024.

ESA, ECSS-E-ST-50C Rev. 2 - Space Engineering - Communications,

European Space Agency, 2024.

I. Latachi et al., “Link budget analysis for a LEO cubesat communication

subsystem,” in Proc. Int. Conf. Advanced Technologies for Signal and
Image Processing (ATSIP), 2017, pp. 1-6.
[10] Ferreira, J., Oliveira, A., Fonseca, P. & Fonseca, J. An experiment to
assess bit error rate in CAN. pp. 15-18 (2004)

[11] G. Korkian et al., “Single Event Upsets Under Proton, Thermal, and Fast
Neutron Irradiation in Emerging Nonvolatile Memories,” IEEE Access,
vol. 10, pp. 114566114585, 2022.

[12] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance of
checksums and CRCs over real data,” IEEE/ACM Trans. Netw., vol. 6,
no. 5, pp. 529-543, 1998.

[2

—

3

—

[7

—

[8

[

[9

—



